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A C++ Implementation of a Lock-Free Priority
Queue Based on Multi-Dimensional Linked List

Alexander Goponenko
Department of Computer Science
University of Central Florida
Orlando, FL 32826
agoponenko@XKnights.ucf.edu

Abstract—This paper is the third and final publication in a
series dedicated to a reimplementation of the priority queue
based on multi-dimensional linked lists (Zhang and Dechev
[1]). This variant of priority queue guarantees O(log N) worst-
case time complexity where N is the size of the key universe.
It also provides improved performance over the state of the
art approaches under high concurrency because each insertion
modifies at most two consecutive nodes, allowing concurrent
insertions to be executed with minimal interference. The current
publication continues discussion of the lock-free implementation
of the priority queue. The performance of the lock-free imple-
mentation is compared to the performance of the MRLock-based
implementation. The correctness of the lock-free implementation
is also discussed and corrections required to maintain quiescent
consistency in case of ongoing purge and insert operation are
introduced. Alternative implementations are also discussed.

Index Terms—priority queue, multi-dimensional list

I. INTRODUCTION

A priority queue is a fundamental data structure that com-
prises a set of key-value pairs where keys indicate priorities
(by convention, a smaller key indicates higher priority). A
typical priority queue implements only two operations: insert,
which adds an item with its associated priority to the queue,
and DeleteMin, which removes the highest priority item from
the queue. This data structure is employed abundantly in al-
gorithms everywhere from high-level applications to low-level
system kernels. Its efficient implementation in multithreaded
environments is critical for modern and future multi-core
systems. [1] introduced a lock-free priority queue based on
multi-dimensional linked lists, with worst-case time O(log N)
for a key universe of size N. This paper is the third and
final in a series of publications about a reimplementation of
the priority queue from [1] which is based on the multi-
dimensional list. The current publication continues discussion
of the lock-free priority queue, initially described in [2]. The
performance of the lock-free priority queue is compared to
the performance of the lock-based priority queue [3] that
uses MRLock [4]. A literature survey and comparison of the
MDList-based priority queue with alternative implementations
is also presented (in Section VI).

II. MULTI-DIMENSIONAL LISTS

As described in [1], a multi-dimensional (linked) list or-
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Algorithm 1: MDList structures
class MDList {

1
2 const int D;

3 const int N;

4 Node+ head;

s )

7 struct Node {

8 int key, k[D];
9 void= val;

10 Nodex child [D];
n o}

ganizes data in multiple dimensions in a way that facilitates
search and insertion. Upon insertion, a scalar key is recalcu-
lated into an array of indexes that may be considered multi-
dimensional coordinates. This array is used, starting at the
lowest dimension, to find pivot points into higher dimensions
during the search for the correct insertion point. In contrast to
a one-dimensional linked list, many intermediate values can
be, and often are, effectively skipped during an insertion. The
same is true of the search operation.

More formally, A D-dimensional list is a rooted tree in
which each node is implicitly assigned a dimension from 0 to
D — 1. The root node’s dimension is 0. A node of dimension
d has no more than D — d children, and each of its children
is assigned a unique dimension in the range from d to D — 1.
The order among nodes is lexicographically based on keys. A
dimension d node should share a coordinate prefix of length
exactly d with its parent [1].

Each insertion or deletion operation on an MDList requires
updating at most two consecutive nodes in the data structure,
which makes it suitable for concurrent accesses. Furthermore,
the worst-case time of the operations is O(log N), where N
is the size of key universe.

Algorithms 1, 2, and 3 are reproduced from [1]. The priority
queue is represented by a class called MDList which has a head
field, a key universe size field, IV, and a dimension field, D.

As mentioned in [1], the insert algorithm requires only a
simple modification to the search algorithm, where a prev
pointer is maintained for linking when the proper position is
found.

In this work we will consider only integer values and keys.



Algorithm 2: Mapping from integer to vector
vector<int> keyToCoord(int key) {

1

2 int basis = ceil(pow(N, 1.0 / D));
3 int quotient = key;

4 vector<int> k;

5 k.resize (D);

6 for (int i =D — 1; i > 0; i—) {
7 k[i] = quotient % basis;

8 quotient = quotient / basis;
9

10 return k;

Algorithm 3: Search for a Node with Coordinates
Nodex searchNode(vector<int> k) {

1

2 Node #cur = head;

3 int d = 0;

4 while (d < D) {

5 while (cur # NULL && k[d] > cur—k[d])
6 cur = cur—>child[d];

7 if (cur == NULL || k[d] < cur—=>k[d])
8 return NULL;

9 d++;

10 }

11 return cur;

2}

As in [1], only unique keys will be considered. Converting the
key into an appropriate D-dimensional vector is accomplished
by Algorithm 2.

III. LOCK-FREE IMPLEMENTATION

Algorithm 4 shows the structure of the priority queue’s node
and other data structures. In addition to regular fields key, k,
child, and wval, the node contains field adesc, which holds
a reference to a descriptor [5] if the node is just inserted
and may not have adopted children yet (details are described
later). The descriptor (AdoptDesc) contains a reference to the
node from which the children must be adopted and a range
of dimensions for which the adoption is pending. HeadNode
has an additional field — ver, which holds the current version

Algorithm 4: Data Structures for Lock-Free Priority Queue
struct AdoptDesc{

1
2 Nodex* curr;

3 int dp, dc;

4}

6 struct Node{

7 atomic<uintptr_t> val;

8 int key;

9 int k[D];

10 atomic<uintptr_t> child [D];
11 atomic<AdoptDesc#> adesc;
2}

14 struct HeadNode: Node{

15 int ver;

16 };

18 struct Stack{

19 Nodex node[D];

20 HeadNodex head;

20}

Algorithm 5: Marking Scripts

1 #define SetMark(p,m) ((p)|(m))

2 #define ClearMark(p,m) ((p)& (uintptr_t)(m))

3  #define IsMarked(p,m) ((p)&(uintptr_t)(m))

4 #define F_ADP 0x1U

5 #define F_PRG 0x2U

6 #define F_DEL 0x1U

7 #define F_ALL 0x3U

s #define Clear(p) ClearMark(p, F_ALL)
Algorithm 6: Priority Queue

1 class PriorityQueue {

2 int N;

3 int R

4 atomic_bool notPurging{true};

5 atomic<int> nMarkedNodes{0};

6 atomic<uintptr_t> head;

7 atomic<Stack#> stack

8 HeadNode firstHeadNode;

9 Stack firstStack;

11 PriorityQueue (int N, int R): N(N), R(R){

12 firstHeadNode .val = F_DEL;

13 firstHeadNode . adesc = NULL;

14 firstHeadNode .key = 0;

15 setCoords(&firstHeadNode , 0);

16 firstHeadNode .ver = 1;

17 for (int i=0; i<D; i++)

18 firstHeadNode.child[i]. store (NIL);

19 head.store ((uintptr_t) (&firstHeadNode));

20 firstStack .head = &firstHeadNode;

21 for (int i=0; i<D; i++)

22 firstStack .node[i] = &firstHeadNode;

23 stack .store(&firstStack);

2 }

26 void setCoords(Nodex n, int key) {

27 int basis = ceil (pow(N, 1.0/D));

28 int quotient = key;

29 intx k = n—>k;

30 for (int i =D — 1; i > 0; i—) {

31 k[i] = quotient % basis;

32 quotient = quotient / basis;

3 }

34 }

35 }s

of the head. The version of the head is incremented during the
purge operation that is described later.

The field val of the node has two purposes. Normally, it
contains a reference to the node’s value. However, if the node
has been deleted, val is reused to hold references needed to
maintain the queue after purge. The deleted node is marked
using the so-called ”bit stealing” technique — the last bit of
val is set to 1 (in this case we will say that the flag F_DEL
is set). The same technique is used to mark invalid references
in the child array. If the reference is invalid because it was
adopted, it is marked with F_ADP; if it is invalid because of
a purge, it is marked with F_PRG. Macros used to mark and
unmark references are shown in Algorithm 5.

The structure of the priority queue itself is demonstrated in
Algorithm 6. N contains the limit on the value of keys (the
size of the key universe); R holds the number of DeleteMin
operations between purges; notPurging is a flag needed
to make sure that only one purge operation is ongoing;
nMarkedNodes is the count of deleted nodes after the
last purge; head is the reference to the current head node;



stack contains the pointer to the current deletion stack. The
constructor initializes a first head and a first stack of the queue.
The head of the queue is a sentinel node, which is marked as
deleted and has key = 0. The values of the keys of nodes
in the queue must be between 0 and N. setCoords perform
mapping from key to array k.

In order to attain lock-free and efficient functioning of the
priority queue, the operations DeleteMin and insert must
be well coordinated. The nodes are deleted from the queue
logically by setting the flag F_DEL. The deletion stack is used
to store the location of the last logically deleted node to make
physical deletion of nodes more efficient. A new node could
be inserted in-between logically deleted nodes in a location
that is not accessible from the current stack. Therefore, the
insert operation may need to rewind the stack to make the
newly inserted node accessible.

Insertion of a node is performed in two steps. In the first step
the node is spliced into the list using a compare-and-swap
(CAS) atomic synchronization primitive in a way similar to
that used in a lock-free linked list [6]. In the second step, the
node adopts some of the children of the node that occupied
its place if the dimension of the replaced node has been
changed as a result of the insertion. The need for the second
step is announced by descriptor object. Other threads help the
adoption if they traverse a node with a descriptor that has been
set.

When the number of logically deleted nodes agglomerates
above a threshold determined by the variable R, a purge
operation is performed to ensure efficient execution and to
enable memory reclamation. The purge operation may need
to update the deletion stack and also must ensure that all non-
deleted nodes remain accessible from the stack. The details of
the operations are discussed next.

A. Details of insert operation

Algorithm 7 presents the operation of inserting an item into
the priority queue. At the beginning of the operation a new
node and a new stack are created. Memory allocation for new
elements is dedicated to an object that implements a Handler
interface, which is shown in Algorithm 8. The new stack gets
recalculated throughout the operation in case the deletion stack
needs to be rewound.

LocatePlace traverses the MDList starting from the head
and determines the target position for the insertion, i.e. the
immediate parent pred for the new node, dimension dp, at
which the new node will become the child of pred, the node
curr that is currently occupying the new node’s slot, and
dimension dec, at which curr will become the child of the
new node. Nodes pred and curr are the only two nodes that
are updated by an insertion. During traversal, finishinserting
(Algorithm 9) is called for each inspected node, to complete
possible ongoing adoption of children.

The CAS operation on line 21 splices the new node into
the list. It can fail if the desired location has been updated
by a concurrent insertion or because the location was marked
invalid by a purge or a child adoption process. In such cases the
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Algorithm 7: Inserting a Node into MDList
bool insert(int key, uintptr_t val, Handlerx h){
Stack #s = h—>newStack();
Node #n = h—>newNode () ;

n—>key = key;

n—>val = val;

setCoords (n, key);

for (int i=0; i<D; i++) n—>child[i].store(NIL);

while (true) {
Node* pred = NULL;
int dp = 0, dc = 0;
s—>head = (HeadNodex) (head.load());
Nodex curr = s—>head;
LocatePlace (h, dp, dc,
if (dc == D) {
// this key is already
return false;

pred, curr, n, s);

in the queue
finishInserting (curr, dp, dc);

FillNewNode (h, n, dp, dc, curr);
uintptr_t temp = (uintptr_t) curr;

if (pred—>child[dp].compare_exchange_strong (temp,

uintptr_t) n)) {
finishInserting (n, dp, dc);
RewindStack (s, n, pred, dp);
return true;
}
}
}

inline void LocatePlace(Handler+ h, int &dp,
Node #&pred, Node =&curr ,
Node #n, Stack #s) {
while (dc < D) {
while (curr # NULL & n—>k[dc] > curr—>k[dc]) {
pred = curr;
dp = dc;

finishInserting (curr, dc, dc);

curr = (Nodex) (Clear(curr—>child[dc].load()));

}
if (curr == NULL || n—=>k[dc] < curr—=k[dc]) {
break

s—>node[dc] =
dc++;
}
}

inline void FillNewNode(Handlers h, int dp, int dc,
Nodex n, Nodex curr) {

curr

if (dp < dc) {
AdoptDesc* desc = h—>newDesc () ;
desc—>curr = curr;
desc—=>dc = dc;
desc—>dp = dp;

n—>adesc.store (desc);
} else {

n—>adesc . store (NULL) ;
for (int i = 0; i < dp; i++) n—>child[i] = F_ADP;
for (int i = dp; i < D; i+4+) n—>child[i] = NIL;
n—>child[dc] = (uintptr_t) curr;

Algorithm 8: Priority Queue Handler

class Handler{
Nodex newNode () ;
AdoptDescx newDesc () ;
Stacks* newStack () ;
HeadNodex newHeadNode () ;

int &dc,

(



Algorithm 9: Finish Inserting
void finishInserting (Node #n, int dp, int dc){

1
2 if (n == NULL) return;

3 AdoptDesc* ad = n—>adesc;

4 if (ad == NULL || dc < ad—>dp || dp > ad—>dc) return;
5 uintptr_t child;

6 Nodes curr = ad—>curr;

7 for (int i = ad—>dp; i < ad—>dc; i++) {

8 child = Clear(curr—>child[i].fetch_or(F_ADP));

9 uintptr_t temp = NIL;

10 n—>child[i].compare_exchange_strong(temp, child);

12 n—>adesc = NULL;

Algorithm 10: Deleting Minimal Node
uintptr_t DeleteMin (Handlers h){

1

2 Stack* sOld = stack.load();

3 Stack* s = h—>newStack();

4 #s = xs01d;

5 int d = D—1;

6 while (true) {

7 Nodex last = s—>node[d];

8 finishInserting (last, d, d);

9 Nodex child = (Nodex) (Clear(last—>child[d].load()))

10 if (child == NULL) {

11 if (d == 0) return NIL;

12 d——;

13 continue ;

14 }

15 uintptr_t val = child—>val;

16 if (IsMarked(val, F_DEL)) {

17 if (Clear(val) == NIL) {

18 for (int i =d; i <D; i++)

19 s—>node[i] = child;

20 } else {

21 s—>head = (HeadNodex) (Clear(val));

22 for (int i = 0; i < D; i++)

23 s—>node[i] = s—>head;

24

25 d = D—1;

26 } else {

27 if (child—>val.compare_exchange_strong(val, F_DEL)
) A

28 for (int i =d; i <D; i++)

29 s—node[i] = child;

30 stack .compare_exchange_strong (sOld, s);

31 int marked = nMarkedNodes. fetch_add (1);

32 if (marked > R)

33 purge (s—head, s—>node[D—1], h);

34 return val;

35 }

36 }

37 }

3}

loop beginning at line 8 restarts. Otherwise, the child adoption
is completed (finishinserting at line 22) and the deletion stack
is rewound if needed (RewindStack at line 23).

B. Details of DeleteMin operation

Algorithm 10 demonstrates extraction of the item with
highest priority, i.e. deletion of the node with the smallest key.
The operation searches for a node that has not been logically
deleted, starting from the last entry of the deletion stack. A
copy of the stack is maintained following the search in order
to update the queue’s stack at the end of the operation. When
a non-logically-deleted node is found, an attempt to logically
delete it is performed by changing val to F_DEL with CAS

atomic operation (line 27). In the case of success, the queue’s
stack is updated unless it has already been updated by another
thread (line 30).

If the count of deleted nodes nMarkedNodes surpasses
threshold R, a purge operation is attempted (line 33). Impor-
tantly, during the traversal of deleted nodes, val is inspected
for the presence of a reference to a newer version of the
queue’s head (line 17). If a reference is found, the search
continues from the newer head (lines 21-23).

C. Details of purge operation

Algorithm 11 outlines the purge operation. Given the head
node hn and the last node to purge prg, the purge operation
proceeds only if no other purge operation is ongoing (lines
4-5) and if hn corresponds to the queue’s current head node
(lines 6-9). The purge operation introduces new sentinel head
node hnNew and a copy of prg, prgN ew. For each dimension
d, the LocatePivot function determines the last node (pvt)
to be purged at this dimension. If put.child[d] is marked
with F_ADP, the purge is restarted (lines 23-27). Otherwise,
put.child[d] is marked with the F_PRG flag (line 57), to
prevent it from being changed, and the reference is adapted by
either AnNew or prgNew (lines 28-38). When all dimensions
have been processed, hn.val and prg.val are updated with
references to help maintaining the deletion stack (lines 41-
42) and the deletion stack is updated if needed by function
UpdateStackAfterPurge.

D. Updating deletion stack

After an insert or a purge operation the deletion stack may
need to be updated. Algorithm 12 performs such update after
inserting a node. Several cases are possible after insert.

Case 1. The versions of the queue’s current stack and
the stack after the insertion are the same.

Case la. The insert point has lower priority than the last
node to be logically deleted. In this case the stack should not
be rewound. However, if the queue’s stack is older than this
insert operation, another concurrent operation, which hasn’t
seen the effect of this insert, can update the stack and make the
inserted node inaccessible. Thus, the stack should be renewed
(lines 7-8).

Case 1b. The insert point has higher priority than the last
node to be logically deleted. In this case the stack must be
rewound (line 10).

Case 2. The version of the queue’s current stack is older
than the version of the stack after the insertion.

Case 2a. The last node to be logically deleted has lower
priority than the prg node that corresponds to the stack’s
current version. In this case the stack must be rewound to
the next version of the head, which is stored in prg.val. It
may not be the latest head, but the stack will eventually reach
the latest head and every non-deleted node is guaranteed to be
accessible (line 16).

Case 2b. The last node to be logically deleted has higher
priority than than the prg node that corresponds to the stack’s
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Algorithm 11: Purge

void purge (HeadNode xhn, Node =#prg, Handlerx h) {

if (!notPurging.load()) return;

bool temp = true;

if (!notPurging.compare_exchange_strong (temp,

return ;

if ((uintptr_t) (hn) # head.load()) {
notPurging.store (true);
return;

false))

nMarkedNodes . store (0) ;
HeadNodesx hnNew = h—>newHeadNode () ;
Nodes prgNew = h—>newNode () ;
prgNew—>setFromNode (prg) ;
hnNew—>val = F_DEL;
hnNew—>ver hn—>ver + 1;
hnNew—>key hn—>key ;
setCoords (hnNew, 0);
for (int i=0; i<D; i++) hnNew—>child[i]. store (NIL);
int d = 0;
Nodes pvt = hn;
uintptr_t child;
while (d < D) {
if (!LocatePivot(prg, pvt, d,
pvt = hn;
d = 0;
continue ;

child)) {

}

if (hn == pvt) {
hnNew—>child[d]. store (child);
prgNew—>child [d]. store (F_ADP) ;

} else {
prgNew—>child [d]. store (child);

if (d == || prgNew—>child[d—1].load () == F_ADP)
hnNew—>child [d]. store ((uintptr_t) prgNew);
} else {
hnNew—>child[d]. store (NIL);
}
d++;

hn—>val.store (SetMark ((uintptr_t) prg,F_DEL));
prg—>val.store (SetMark ((uintptr_t) hnNew, F_DEL));
head . store ((uintptr_t) hnNew) ;

Stack# s = h—>newStack();

UpdateStackAfterPurge (s, hnNew);

notPurging.store (true);

return ;

}

inline bool LocatePivot(Nodex prg, Nodex &pvt,
uintptr_t &child) {
while (pvt—k[d] < prg—=>k[d]) {
finishInserting (pvt, d, d);
pvt = (Node#) (Clear(pvt—>child[d]));

int d,

do {
child = pvt—child[d];
} while (!IsMarked(child ,F_ALL) && !pvt—>child[d].
compare_exchange_weak (child , SetMark(child , F_PRG
)))s
if (IsMarked(child ,F_ADP)) {
return false;
} else {
child = ClearMark(child , F_PRG);
return true;

Algorithm 12: Rewinding deletion stack after insert

1 inline void RewindStack(Stacks* s, Nodex n, Nodex pred,

int dp) {
2 //NOTE: no need to rewind stack if node is already
deleted ...
3 for (bool first_iteration = true; !IsMarked(n—>val,
F_DEL); first_iteration = false) {
4 Stack# sNow = stack.load();
5 if (s—>head—>ver == sNow—>head—>ver) {
6 if (n—>key > sNow—>node[D — 1]—>key) {
7 if (!first_iteration) break;
8 xs = xsNow;
9 } else {
10 for (int i=dp; i<D; i++) s—>node[i] = pred;
1
12 } else if (s—>head—>ver > sNow—>head—>ver) {
13 Nodex prg = (Nodex) (ClearMark (sNow—>head—>val,
F_DEL));
14 if (prg—key < sNow—>node[D—1]—>key) {
15 s—head = (HeadNode=x) (ClearMark(prg—>val, F_DEL
)
16 for (size_t i=0; i<D; i++) s—node[i] = s—>head;
17 } else {
18 if (!first_iteration) break;
19 #s = xsNow;
20
21 } else { // s—>head—>ver < sNow—>head—>ver
22 Nodex prg = (Nodex) (ClearMark(s—head—>val, F_DEL
))s
23 if (prg—key > n—>key) {
24 for (int i=dp; i<D; i++) s—>node[i] = pred;
25 } else {
26 s—head = (HeadNodes#) (ClearMark(prg—>val, F_DEL
)
27 for (int i=0; i<D; i++) s—>node[i] = s—>head;
28 }
29
30 if (stack.compare_exchange_strong(sNow, s)) {
31 break ;
3 }
3 }
4}

current version. In this case the stack should not be rewound
but must be renewed as in Case la (lines 18-19).

Case 3. The version of the queue’s current stack is newer
than the version of the stack after the insertion.

Case 3a. The item was inserted into purged region (that
is, prg.key > n.key, where prg corresponds to the head of
the stack after the insertion). In this case the stack must be
rewound. It will eventually reach the latest head and every
non-deleted node is guaranteed to be accessible (line 24).

Case 3b. The item was inserted after prg. In this case the
stack must be updated to the next version of the head, which is
stored in prg.val. It may not be the latest head, but the stack
will eventually reach the latest node and every non-deleted
node is guaranteed to be accessible (lines 26-27).

Algorithm 13 demonstrates the procedure of updating the
stack after the purge. Because only a purge operation can
increase the version of the head, the number of possible cases
in this situation is smaller than after insertion. The current
queue’s stack should only be updated if it is passed the prg
node that corresponds to the stack’s head (lines 11-12), as in
Case 2a for the insertion. If the queue’s current stack is before
the prg node that corresponds to its version, the stack must
be renewed (lines 14-15), as in Case 2b for the insertion.



Algorithm 13: Updating deletion stack after purge
1 inline void UpdateStackAfterPurge (Stack= s, HeadNodes:

hnNew) {

2 for (bool first_iteration = true; true;
first_iteration = false) {
3 Stack# sNow = stack.load();
4 if (hnNew—>ver < sNow—>head—>ver) {
5 // The stack has been updated already
6 return;
7 }
9 Nodes prg = (Nodex) (ClearMark (sNow—>head—>val,
F_DEL)):
10 if (prg—key < sNow—>node[D—1]—>key) {
11 s—>head = (HeadNodex) (ClearMark (prg—>val, F_DEL))
12 for (size_t i=0; i<D; i++) s—>node[i] = s—>head;
13 } else {
14 if (!first_iteration) break;
15 #s = #sNow;
16
17 if (stack.compare_exchange_strong(sNow, s)) {
18 break ;
19 }
20 }
2}
IV. EVALUATION

A. Tests

The correctness of the implementation was evaluated by a
series of tests, briefly described below, which are essentially
the same as those used for the lock-based implementation [3].

Test 1. Sequential execution: The first set of tests evaluates
correctness of the implementation during sequential execution.
In the first stage, elements with all possible priorities in the
range from 0 to 262144 except 100 were inserted into the
queue, in ascending order. Then an element with priority 100
was inserted. Then DeleteMin was called repeatedly and the
correct order of elements extracted was checked.

The second stage checks whether elements are correctly ex-
tracted in ascending order after they are inserted in descending
order.

The third stage ensures that the elements are correctly
extracted if they have been inserted in a pseudo-random order.

Tests 2-4. Concurrent execution: The second test checks
that if elements are inserted concurrently by 4 threads, they
will be later extracted in the correct order.

The third test ensures that if elements are inserted concur-
rently and also extracted concurrently afterwards then each
extracting thread will observe consistent order of extraction.

The last test checks whether the priority queue operates
normally in the case of inserts and extractions by different
threads. Each thread during the test performs a randomized
mixture of inserts and extractions.

B. Benchmarks

Performance of the lock-free and MRLock-based versions
of the priority queue was evaluated in three mini-benchmarks
representing different patterns and ratios of invocations of
insert and DeleteMin. To highlight the functioning of the

implementations, memory for all dynamic objects was preallo-
cated before execution of the benchmarks. The MDList-based
version of the queue from [3] was modified accordingly.

All threads in a benchmark are executing similar jobs,
which are described in detail in [3]. In the first benchmark,
all threads first only insert elements into the queue, then
DeleteMin operators are called after all threads have finished
all insertions.

In the second and third benchmarks, each thread randomly
calls insert and DeleteMin operations with a given pair
of probabilities summing to one. The probability of calling
DeleteMin is 0.5 for benchmark 2 and 0.2 for benchmark
3. However, to prevent depletion of the queue, if a number
of DeleteMin operations performed by a thread reaches the
number of insert operations performed by the same thread,
the thread will perform an insert operation, regardless of a
probabilistic draw.

Figure 1 shows the contrast between the performance of
the lock-free and MRLock-based implementations. The per-
formance is measured as the combined throughput of all
threads (in million operations per second — MOPS) of the
benchmarks on two different operating systems (Windows
10 and Ubuntu 18.04.3 LTS) on a machine equipped with
AMD FX-8300 (8 cores, 4 units) and 8GB DRAM when
the number of threads is varied from 1 to 8 threads for the
MRLock-based implementation and from 1 to 32 for the lock-
free implementation. The performance characteristics were
computed based on 10 observations (error bars on the figure
indicate standard deviation).

The throughput of the MRLock-based implementation
quickly decreases with the increase of the number of cores for
all benchmarks on both operating systems. When the number
of threads exceeds the number of cores, the throughput of
MRLock-based implementation drops significantly and there-
fore is not shown on the Figure 1a,b.

The performance of the lock-free implementation scales
better. On the Windows system, its throughput is slightly
increasing when the number of threads increases from 1 to
8 and then slightly decreasing with further increase in the
number of threads (but the change in the performance does not
appear to be substantial). On the Linux system, the throughput
is increasing for benchmark 1 when the number of threads
increases. For benchmarks 2 and 3, the performance the Linux
system stays virtually the same for the number of threads in
range from 1 to 4 and in range from 8 to 32. However, it
drops significantly when the number of threads increases from
4 to 8. The poor performance of the lock-free priority queue
implementation at high concurrency is associated with increase
of delete nodes that DeleteMin operations must traverse before
they find a node that is not marked as deleted. Perhaps, the
ongoing insert operations cause some kind of disruption on
the purge operations that leads to accumulation of logically
deleted nodes in the queue.
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Fig. 1: Average performance (in million operations per second — MOPS) vs number of threads for benchmarks 1-3 executed
on AMD FX-8300 (8 core 4 units): (a) MRLock-based version under Windows 10, (b) MRLock-based version under Ubuntu
18.04.3 LTS, (c) lock-free version under Windows 10, and (d) lock-free version under Ubuntu 18.04.3 LTS. The results were
computed based on 10 observations. Error bars indicate standard deviation.

V. CORRECTNESS

In the implementation presented here, overlapping insert
operations are linearizable provided that they do not overlap
with DeleteMin operations. A successful CAS operation on
line 21 of Algorithm 7 is the linearization point of an insert
operation with respect to another insert operation if the
element was inserted. If the element was not inserted because
the key was already in the queue, the linearization point is the
last load operation on line 37 before the method returns.

Overlapping DeleteMin operations are also linearizable if
they do not overlap with insert operations. The lineariza-
tion point of a DeleteMin operation with respect to another
DeleteMin operation is either a successful CAS on line 27
of Algorithm 10 if the queue was not empty. If, however, the
queue was empty, the linearization point is the last load on
line 9 before returning on line 11.

Overlapping DeleteMin and insert methods are quiescently
consistent provided that insert operations do not overlap with
purge invocations.

Quiescent consistency is a weaker consistency property than
linearizability. According to [5], quiescent consistency requires
that method calls separated by a period of quiescence should
appear to take effect in their real-time order, and linearizability
implies quiescent consistency.

An example that demonstrates non-linearizable execution is
demonstrated in Figure 2. Provided that the second DeleteMin
operation reads the deletion stack at time 7'1 while insert(5)
updates the stack at time 7°2, and insert(7) adds the item 7 at
time 7'3, the DeleteMin method may extract item 7 at time
T4 and return this item even though linearizability (as well
as sequential consistency [5]) requires that insert(5) precedes
insert(7).
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Fig. 3: Example of violation of quiescent consistency.

However, the quiescent consistency can be violated by
the described above implementation if an insert operation
overlaps with a purge operation. Figure 3 demonstrates an
example of violation of quiescent consistency. In this example,
insert(5) overlaps with DeleteMin that initiates a purge
operation. Assume that the DeleteMin method extracts item 7
at time T'1, while insert(5) inserts item 5 at time 7'2 before
the purge operation updates the queue’s head at time 7'3.
Another instance of insert, insert(2), is called after a period
of quiescence. The method will observe the new head and
insert item 2 between 0 and 7. The ensuing state of the queue
is shown in Fig. 3b. As a result, two subsequent DeleteMin
invocations, even if separated by periods of quiescence, will
first return 5 and only then 2.

To make the implementation satisfy the quiescent consis-
tency criteria, a “corrected” version of the priority queue was
introduced, in which the purge and insert operations were

Algorithm 14: Modified purge operation
void purge (HeadNode xhn, Node #prg, Handlerx h){

/% Lines 2—45 from Algorithm 11 %/

s = stack.load();
if (s—head—>ver < hn—>ver) {
// find elements in purged regions and reinsert
9 while (true) {

1
2

3

4

5 hn = (HeadNode=x) (head.load());
6

7

8

10 {val, res} = deleteCleanup (h, hn—=>ver);
1 if (val == NIL) {

12 // no nodes found in the purged region
13 break ;

14 } else {

15 insert(key, val, h);

16 }

17 }

18 }

19 notPurging.store (true);

20 return;

21}

Algorithm 15: Modified insert operation

bool insert(uint64_t key, uintptr_t val, Handlers h){

1

2 // repeat until don’t have to reinsert

3 while (true){

4

5 /% Lines 2—7 from Algorithm 7 #/

6

7 while (true) {

8

9 /% Lines 9—20 from Algorithm 7 %/

10

11 if (pred—>child[dp].compare_exchange_strong (temp,

(uintptr_t) n)) {

12 finishInserting (n, dp, dc);

13 HeadNodex hn_used = s—>head;

14 RewindStack (s, n, pred, dp);

15 HeadNodex hn_now = (HeadNodex) (head.load());

16 while (true) {

17 if (hn_now—>ver < hn_used—>ver) {

18 return true;

19 }

20 Nodes prg = (Nodex)(Clear(hn_used—>val));

21 if (prg—key > key) {

22 break ;

23

24 hn_used = (HeadNode:)(Clear(prg—>val));

25

26 if (n—val.compare_exchange_strong(val, F_DEL))
{

27 break ;

28

29 return true;

30 }

31 }

3 }

3}

modified as follows. Before returning, purge operation checks
whether the deletion stack corresponds to the outdated stack
(lines 5-7 of Algorithm 14). If this is indeed the case, the
purged region is scanned for nodes that were not yet deleted,
by calling repeatedly the new deleteCleanup operation. The
deleteCleanup operation is similar to the DeleteMin, but
with two differences: (1) in addition to returning the value
of the deleted element, it also returns its key and and (2)
if no node has been found in the purged region, instead of
traversing into the nodes that has not been purged, it exits
without deleting a node and returns NIL instead of a node



value. If the deleteCleanup operation on line 10 of Algorithm
14 deleted an element, the element is reinserted back into the
queue (line 15) and thus it is moved outside of the purged
region into the region that has not been purged. As soon as
no element is found in the purged region, the purge operation
exits (lines 19-20).

Because the purge operation may return before a concurrent
insert operation updated the deletion stack, the insert oper-
ation also must perform a check after updating the deletion
stack to make sure that the inserted element doesn’t stay in
the purged region. The modification to the operation is shown
on Algorithm 15. Basically, a check is performed to determine
whether the just inserted node is in the purged region (lines 16-
24). If the node is determined to be in the purged region, and
attempt to delete the node is performed with CAS operation
(line 26). If the node was deleted successfully, it is reinserted
back into the queue. Otherwise, the insert operation returns.

A. Evaluation of the corrected implementation

Performance of the corrected priority queue was evaluated
by executing the same three mini-benchmarks. Figure 4 shows
the the throughput of the modified lock-free implementations
on the same system and under the same conditions as the
original implementation presented on Figure lc,d. If com-
pared with the throughput of the original implementation, the
throughput of the corrected implementation is more varied,
which manifests in higher standard deviation. Most likely, the
performance of the corrected implementation depends stronger
on the order of operations, which in the benchmarks 2 and 3
was produced by a random generator.

According to results of the benchmarks execution, the
corrections necessary for quiescent consistency do not com-
promise the performance of the lock-free priority queue
very significantly. Moreover, the throughput measured on the
benchmark 2 on Windows 10 for 4 and 8 threads, surprisingly,
improved to some extend. Possibly, cleaning of purge regions,
which was introduce in the corrected version, leads to more
efficient subsequent purge and DeleteMin operations.

It is perhaps of interest to estimate how often the purge
region cleaning procedures, introduced in the corrected im-
plementation, are getting invoked. Sometime, such as in case
of benchmark 2 and 16-32 threads, the fraction of purge
operations that execute lines 8-17 of Algorithm 14 may exceed
90%. On average, approximately 1 element of the queue is
reallocated by the purge operation per 100 invocation of these
lines of code. The insert operations perform reinsert approx-
imately once per 10 purges. Thus, the introduced measures to
ensure the quiescent consistency may have significant effect
in application.

VI. LITERATURE SURVEY AND COMPARISON WITH
MDLIST

Both sequential and concurrent priority queues are generally
built from array-based heaps. A heap can be viewed as a binary
tree. A min-heap maintains the min-heap property, which
states that every node is smaller than both of its children.

Array-based heaps display heavy memory contention when
a newly inserted key ascends to its target location and after
the top item is removed [1]. Furthermore, the heap invariant
is not maintained most of the time during the execution of
an insert or DeleteMin operation, impeding concurrent ac-
cess to the structure. Therefore, efficient lock-free heap-based
implementations of a priority queue are lacking. The heap
based implementation from Intel Threading Building Blocks,
an established industry standard concurrent library, employs
a dedicated aggregator thread to perform all operations and
therefore is not lock-free [1]. In general, heap-based multi-
thread priority queues do not scale well.

In this section, we compare a few of the most advanced
modern approaches to concurrent priority queues.

A. Skiplists

The structure of the skiplist [7] enables lock-free priority
queue implementations that outperform heap-based implemen-
tations on modern multi-core systems. The first lock-free
priority queues based on skiplists were presented by Sundell
and Tisgas [8] and Herlihy and Shavit [5]. In 2013, Linden
and Jonnson [9] published a paper about an approach which
is sometimes referred to as LIPQ.

It seems to us that LJPQ is possibly the best skiplist-based
concurrent priority queue. It is a linearizable implementation
of the priority queue, in which (as also is the case with
the MDList-based queue) the DeleteMin operation proceeds
without physical deletion of nodes: the nodes are logically
deleted (e.g. simply marked) but not unlinked from the list.
The logically deleted nodes are physically deleted in batch
“by simply moving a few pointers in the sentinel head node
of the list, so that they point past logically deleted nodes, thus
making them unreachable” [9]. However, physical deletion in
LJPQ may have a slightly different meaning than the one
to which we are most accustomed. When the nodes become
unreachable they are also marked for recycling. An allocator
should then take care of the nodes: make sure that no thread
holds a reference to a node and then reuse or release it, thus
performing a regular garbage collector’s job. It is trivial to
implement LJPQ with epoch-based memory reclamation in the
same way as the MDList-based priority queue is designed.

Linden and Jonnson also opted for less frequent update of an
atomic variable that holds the pointer to the last deleted node.
Thus, DeleteMin performs a larger number of read operations
when traversing the list to find the node to be deleted. This
could be justified because, “due to the microarchitecture of
today’s processors, the cost of these reads, relative to the la-
tencies incurred by an increased number of global writes (e.g.,
CAS), will be very cheap” [9]. MDList-based priority queue,
on the opposite, maintains the deletion stack in order to reduce
the number of traversed nodes in DeleteMin operations.

The performance of LJPQ has been measured in different
benchmarks in several publications [1], [9]-[11]. On a mixture
of insert and DeleteMin operations, the throughput of the
queue is peaked for 4-16 threads and then decreases with
the increase of the numbers of threads. The bottleneck of
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the queue is the DeleteMin operation [9]. The bottleneck
is somewhat exacerbated by the design, because inserting of
items is performed after all already deleted nodes (so that the
logically deleted nodes always form a prefix of the list), which
is exactly the place that the DeleteMin operations are trying to
access. The throughput of MDList-based performance queue is
less than of LJPQ for small number of threads because of the
higher overhead of the former. However, when the number of
the threads exceeds 8, the MDList-based performance queue
starts to outperform LIPQ [1].

Braginsky, Cohen, and Petrank [10] reported a more in-
volved design of a concurrent priority queue, which is known
as CBPQ. It was also also based on a skiplist [5] but include
many significant optimizations. The skiplist in CBPQ is com-
posed of chunks of elements. Each chunk has a range of keys
associated with it and contains all entries with keys in this
range. The ranges do not intersect and the chunks are ordered
in the skiplist by their ranges. The first chunk and all other
chunks are build differently. The first chunk is an immutable
sorted list. To delete the minimum, a thread simply atomically
fetches and increments an index to this array. To insert a key
to the first chunk, a thread registers this key in a special
buffer and requests the first chunk rebuild. Elimination [5]
can be executed on the elements in the buffer. Subsequently, a
new first chunk is created from the remaining keys in the old
first chunk, all keys registered in the buffer, and if needed,
more keys from the second chunk. The creation of a new
first chunk is also triggered when the old first chunk becomes
empty. All other chunks consist of unsorted arrays. The insert
operation simply finds the adequate chunk, and — provided
that it is not the first chunk — adds the new element to the first
empty slot in the array. When the chunk is filled, it is split
into two chunks using a lock-free mechanism. For efficiency,
CBPQ uses the fetch-and-increment instruction instead of
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the compare-and-swap (CAS) instruction.

According to the performance evaluation on a benchmark,
consisting of a mixture of insert and DeleteMin operations
[10], CBPQ scales better than LJPQ. However, because of
higher overhead, the throughput of CBPQ is less than the
throughput of LIPQ if the number of threads is less than 24.
MDList-based priority queue is expected to outperform CBPQ
for up to 32 threads.

Although skiplists proved to be an efficient base for concur-
rent priority queue implementations, they have several poten-
tial drawbacks. For instance, although average time complexity
of inserting an item in a skiplist is O(log N), the worst-case
time is O(N), where N is the number of items in the structure.
Also, inserting an item into a skiplist involves updating several
distant nodes, which may cause interference among concurrent
operations and reduce throughput in a lock-free scenario.

B. Relaxed Priority Queues

The major bottleneck of concurrent priority queues is due to
the inherent sequential semantics of the DeleteMin operation
[12]. Two approaches have been employed to alleviate this bot-
tleneck: consistency relaxation [1] and semantics relaxation.
The first approach was demonstrated by Herlihy and Shavit
[5] and Zhang and Dechev [1] through implementation of
quiescently consistent rather than linearizable priority queues.
The second approach was explored by Alistarh et al. [13], who
introduced the Spraylists structure, Wimmer et al. [14], who
developed k-log-structured merge-trees, and Rihani et al. [15],
who pioneered MultiQueue.

In 2015, Alistarh et al. published a paper titled “The
SprayList: A scalable relaxed priority queue” [13]. A common
theme that we found during our literature survey was a tradeoff
between scale and correctness of the DeleteMin function (or
operation), and we believe this tradeoff is clearly implied in



this case by the fact that the SprayList’s DeleteMin returns
an element among the first O(Plog® P) where P is the
number of threads. Alistarh et al. state, “Starting from a non-
blocking SkipList, the main innovation behind our design is
that the DeleteMin operations avoid a sequential bottleneck
by ‘spraying’ themselves onto the head of the SkipList in
a coordinated fashion. The spraying is implemented using a
carefully designed random walk, so that DeleteMin returns
an element among the first O(plog® p) in the list, with high
probability, where p is the number of threads” [13]. This
is clearly an example of a Relaxed Priority Queue, as the
semantics of DeleteMin are relaxed here. In contrast, MDList
is quiescently consistent [1], and MDList’s DeleteMin is much
more likely to return the element associated with the minimal
key. As Alistarh et al. state, competing threads at the first
element (min) are made “to ‘skip ahead’ in the list, so that
concurrent operations attempt to remove distinct, uncontended
elements” [13]. Alistarh et al. also state, “The SprayList
provides probabilistic guarantees on the priority of returned
elements” [13]. In contrast, probabilistic guarantees are not
required with MDList. Alistarh et al. then state, “The obvious
issue with this approach is that one cannot allow threads
to skip ahead too far, or many high priority (minimal key)
elements will not be removed. Our solution is to have the
DeleteMin operations traverse the SkipList, not along the list,
but via a tightly controlled random walk from its head. We
call this operation a spray” [13].

With k-LSM, Wimmer et al. presented a “new, lock-free
concurrent priority queue built from a logarithmic number of
sorted arrays of keys, similar to the log-structured merge-
trees used in databases” [14]. As is commonly done with
concurrent priority queues, k-LSM relaxes the semantics of
the DeleteMin operation. In contrast, MDList is quiescently
consistent [1], and MDList’s DeleteMin is much more likely
to return the element associated with the minimal key. Notably,
k-LSM puts a limit, p 4+ 1, on the highest rank-order of the
key associated with an element deleted by the DeleteMin
operation, where p is related to the number of threads P
and a runtime configurable parameter k£ by the equation
p = P - k. Clearly, in any practical application of k-LSM, p
will be significantly greater than both k and P. Furthermore,
linearization requirements on insertions are relaxed with k-
LSM [14]. The experiments of Wimmer et al. showed “high
single thread performance” [14], meaning that the ‘overhead’
of their implementation is low enough that their queue has
good performance for a single thread (not much worse than a
heap for example). Wimmer et al. also found that k-LSM has
“very good scalability when choosing a reasonably large value
for k.” [14]. Again, we believe that a common trade-off with
concurrent priority queues is between scale and correctness of
the DeleteMin operation, and that this is clearly applicable to
k-LSM queue and is clearly implied regarding k-LSM by the
previous quote.

Rihani, Sanders, and Dementiev introduced a MultiQueue
data structure [15]. This conceptually simple priority queue is
build from C'- P sequential priority queues protected by locks,
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where C' is a constant and P is the number of threads. The
insert operation tries to lock at random one of the queues,
and, if the lock was successful, inserts in that queue. The
DeleteMin operation selects at random two queues and then
tries to lock the queue with the smallest minimum element
out of the two selected. If the lock was successful, the actual
DeleteMin operation is performed on the locked queue. The
MultiQueue does not provide any guarantee, but according
to experimental evaluation, the rank error of the MultiQueue
is smaller on average and more tightly distributed than of
the SprayList, while the throughput of the former is much
higher than of the later [15]. Note that the MulitQueue is lock-
based, although a preempted thread that holds a lock does not
block the progress of other threads because the number of the
sequential queues exceeds the number of threads.

A highly conceptually involved design of the priority queue,
named CA-PQ, was presented by Sagonas and Winblad [11].
The main idea of CA-PQ is introduction of thread-local
buffers for insert and DeleteMin operations, which capacities
increase or decrease depending on contention detected on the
global priority queue. In case of no contention, the capacities
of the thread-local buffers are equal to zero, thus all operations
go through the global queue. Therefore, CA-PQ is a semanti-
cally correct priority queue when no contention. If a thread
detects contention, it increases the capacity of the thread-
local buffers. If the insert buffer is full or the DeleteMin
buffer is empty, the thread performs a bulk operation on the
global priority queue. Thus, activating contention avoidance
reduces the number of accesses to the global priority queue,
while at low contention the semantic correctness is restored.
Hence, CA-PQ scales well and has performance advantage
over related relaxed data structures.

We believe that a common trade-off with concurrent priority
queues is between scale and correctness of the DeleteMin
operation. Because rank errors of DeleteMin operations may
result in wasted computations, the optimal balance between
throughput and correctness may depend on the application. For
instance, even though all relaxed semantic priority queues had
higher throughput than LIJPQ, only CA-PQ and MultiQueue
outperformed LJPQ in calculation of single source shortest
path in an unweighted LiveJournal graph [11]. In contrast,
MDList is quiescently consistent [1], and MDList’s DeleteMin
is much more likely to return the element associated with the
minimal key. It may be more advantageous in applications
where rank errors of the DeleteMin operations lead to weighty
performance penalty.

VII. CONCLUSIONS AND FUTURE WORK

Overall, in this lock-free version, the performance is about
the same when the number of threads increases. We did
however see increases in performance in some cases with an
increasing number of threads. In contrast, the performance of
the lock-based version [3] in this series of papers decreased
quickly with increasing numbers of threads.

The presented implementation correctly performs the oper-
ations of a priority queue in a multithreaded environment. The



performance stays about the same when the number of threads
increases.

Our strongest takeaway from our literature survey was that
scale and correctness of the DeleteMin operation often trade
off with one another in Relaxed Priority Queues and Skiplist-
based approaches to Priority Queues. It may be better to use
MDList [1] if one is working at scale and if out-of-order
operations cannot be easily tolerated, i.e. if correctness of
the DeleteMin operation is important, than to use a Relaxed
Priority Queue or a Skiplist-based Priority Queue.
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