Apex

The vehicle OS company.

Executor based on wait-set
and polling subscription

michael.poehnl@apex.ai

© 2021 Apex.Al, Inc.

mailto:michael.poehnl@apex.ai

What ROS users are used to

Default ROS 2 execution model

e Node

o Publishers
o Subscriptions
o Clients
o Services
o Timers
O

e EXxecutor reacts on events
o Publisher sends a message
o Client sends a request
o Timer expires
O

e EXxecutor executes callbacks for the events
o Subscription callbacks
o Service callbacks

o Timer callbacks
o ...

© 2021 Apex.Al, Inc.

How can such an executor
be implemented?

Active Object Pattern

Executor has an event queue and an own thread of control for decoupling
from producers

E.g. a condition variable is used to do a non-busy wait on the queue
Executor thread is woken up if a new event is pushed to the queue
Events typically contain the data to be processed

One or many threads are used to execute the tasks associated with the
events

That’s roughly how it was implemented in ROS 1

Event Producer

Event Producer

Event Producer

Executor

© 2021 Apex.Al, Inc.

Perfect match when the events
are related to a specific task

® o . 0O 5 & 5:35mM
536 | e —

Q all 56

onPhoneButtonPressed)

Now Playing onMusicButtonPressed()
onMapsButtonPressed()
onMessagesButtonPressed)

@ musij
O

=)
Settings

. \] © 2021 Apex.Al, Inc.

Some things are different
with ROS 2, right?

DDS and the default ROS 2 executors

e DDS is used as middleware

O
O

Data readers already queue messages (in the reader cache)
Event-driven interaction via

m Listener (Event callbacks are executed in a middleware thread)

m Wait-set (User thread can wait for events that trigger the wait-set)

e Current ROS 2 default executors use a wait-set for DDS related events

O

O
O
O

Attach the event sources like subscriptions or services to a wait-set
Wait in an executor thread for the wait-set to get triggered

Execute callbacks for the entities that triggered the wait-set

By (DDS) design, handling of events and messages are separated

Middleware

DDS Data Writer

DDS Data Writer

DDS Data Reader

DDS Data Reader

" E

DDS Data Writer

DDS Data Reader

Events *

Event handling

with wait-set
Executor

Messages

© 2021 Apex.Al, Inc.

You can also have the ROS 1
event queue back

Roughly like this

Middleware

DDS Data Writer

DDS Data Reader

- B

DDS Data Writer

DDS Data Writer

DDS Data Reader

B

DDS Data Reader

Middleware

Listener Thread

Events f

Executor

Messages

© 2021 Apex.Al, Inc.

But my use case Is another

A typical use case

Camera processing

l | ' | |
I I ' | | >
node : : : : : :
		l	
		I	
		I	
		l	
I	I		
:			I
Radar processing ,	l ' ! l >		
node : : : ; : '			
		I	
		I	
		l	
I	I		
		I	
:		:	'
:			
Transformation : I ' : : : 5			
node I			
, :			
	:		
, :			
, :			
	:		

Fusion node Fusion node Fusion node

Execution 1 Execution 2 Execution 2

e A node has several subscriptions with different update frequencies (e.g. a fusion node)
e A node has a specific task (e.g. fuse the radar objects with the latest camera objects, use latest transformation for this)
e The node task shall be executed whenever a specific condition is met (e.g. new radar message is available)

© 2021 Apex.Al, Inc.

Is this also a perfect match?

| =0 ‘ onNewimage(. Camera processing
node
onNewCameraObijects()
s
onNewRadarObijects
| onNewRadarScan|() e jects() _
C\) > node Fusion node
onNewTransformation()
s

Transformation
node

© 2021 Apex.Al, Inc.

A typical use case

Camera processing
node

Radar processing
node

Transformation
node

Fusion node Fusion node Fusion node
Execution 1 Execution 2 Execution 2

ny should | handle callbacks for messages that are not needed for my task? x
ny should | take care of message caching when DDS can do this for me (History QoS)? O
ny should | bother with these unnecessary context switches when | could avoid them?

ouldn’t it be good if the node were called to do its task whenever the execution condition is met?

=S===

© 2021 Apex.Al, Inc.

Executor based on walit-set and polling subscription

Node base class
o void execute() - called by the executor when the execution condition is met
o subscription_list get_triggering_subscriptions() - get the subscriptions relevant for triggering the node execution

Polling subscription
o Sounds worse than it is - We only “poll” when the executor tells us it makes sense (execution condition is met)

o Allows to read() and take() messages from the DDS reader cache
o Allows to drop uninteresting messages already in the middleware (e.g. set History QoS=1 if latest is greatest)

Efficient use of the DDS wait-set
o Only attach to the wait-set the events that are relevant for the node execution

Executor based on these building blocks (and some more ...)
o Calls the execute() method of a node when one of the triggering events occurs
o Optionally, a callable provided by the user is used as an execution condition that is evaluated on triggering events

Can you do this with ROS 2?
o Not straightforward, but there is a starting point as with the Foxy release an rclcpp::WaitSet and a take() method for
subscriptions were introduced (https://github.com/ros2/rclcpp/pull/1047)

© 2021 Apex.Al, Inc.

https://github.com/ros2/rclcpp/pull/1047

Fusion example

e Only the radar subscription is a triggering one
e Executor calls execute() of the fusion node whenever a new radar message is received
e In execute_impl() the new messages from radar, camera and transformation are taken and processed

1 execute impl()

radarMessages = m radarSubscription->take();
cameraMessages = m_cameraSubscription->take(); Ut std: :make_shared<my node>("my_node");
o transformationMessages = m transformationSubscription->take(); |

executor factory::create();

ibscription list get triggering subscriptions impl() const override exec->add(node) ;

return {m radarSubscription}; exec->run()
e .

on<Radar>::SharedPtr m_radarSubscription{...}; rclcpp: :shutdown() ;
tion<Image>::SharedPtr m cameraSubscription{...QoS(KeepLast(1))...};
Transform>::SharedPtr m_transformSubscription{...};

© 2021 Apex.Al, Inc.

Planner example

e The planner shall be executed every 100ms, no triggering subscriptions
e Executor calls execute() of the planner node whenever the cyclic timer expires
e In execute_impl() all new messages are taken and processed

yid execute impl() o\

std: :make_shared<my node>("my_node");

messagesl
messages?2
messages3

m subl->take(); . B L PR N

= ' Ut executor tactory::createl();
m sub2->take(); , : ()
m sub3->take();

exec->add(node, 100ms):

exec->run():
: :PollingSubscription<X>::SharedPtr m subl{...}; 1
pp: :PollingSubscription<Y>::SharedPtr m sub2{...}; rclcpp::shutdown() ;
::PollingSubscription<Z>::SharedPtr m sub3{...}; eturn 0;

© 2021 Apex.Al, Inc.

Execution condition example

e The fusion node shall be executed if there is at least one message for radar and camera
e Executor calls execute() only if the provided execution condition returns true
e Execution condition is evaluated whenever the wait-set gets triggered (here on new radar and camera messages)

V“"ready()

to radarMessages = m_radarSubscription->read();
[0 cameraMessages = m cameraSubscription->read();
return !radarMessages.empty() && !cameraMessages.empty();

. ‘ std:: <my node>("my node");
execute impl() | node std make_shared \ ("my node");

2 8 ou B

to radarMessages = m_radarSubscription->take(); auto exec = executor_factory::create();
cameraMessages = m _cameraSubscription->take(); | |
transformationMessages = m transformationSubscription->take();

exec->add(node, [node] {return node->ready();});

. . . : g : exec->runi(),
ibscription list get triggering subscriptions impl())

return {m radarSubscription, m cameraSubscription}; rclepp: :shutdown() ;
return 0;

© 2021 Apex.Al, Inc.

Results for the reference system

Reference system v0.1.1, Raspberry Pi with Ubuntu 20.04, using all 4 cores

o No overload or dropped messages when using the ROS 2 multi-threaded executor

Focusing on comparison of multi-threaded executor with Apex.0OS executor

Measurements were done with Apex.OS and Apex.Middleware

o l.e. the multi-threaded executor runs in Apex.0OS and not in ROS 2 Galactic

o rmw_apex_middleware was also used for the multi-threaded executor

Assignment of nodes to Apex.0OS executors and core affinity for executors to best meet the target KPIs

Rear Lidar Driver

Front Lidar Driver

Point Cloud Map Visualizer Lanelet2 Map C
[] [] ore 3

el .~
=11

-
-

Core O

Vehicle DBW System

© 2021 Apex.Al, Inc.

Results for the reference system

Latency Summary Table 10s [FrontLidarDriver/RearLidarDriver (latest) -> ObjectCollisionEstimator]

Average Latency (ms)

N
o

s

0

exe mw type low mean high
autoware_default_ar rmw_apex_middlew: latency 34 4016 34 4322 34 5152
autoware default m rmw apex middlew: latency 35.6035 41.7147 46.1216

Latency Summary 10s [FrontLidarDriver/RearLidarDriver (latest) -> ObjectCollisionEstimator]

T

top

34.4502378000000C 34.4141622

45.69625

bottom

37.73315

std _dev
0.0180378

3.98155

with default number crunching

f
rmw_apex_middleware

autoware default_apex os_executor optimized

f
rmw_apex_middleware

autoware default multithreaded

executot

© 2021 Apex.Al, Inc.

Results for the reference system

Latency Summary Table 10s [FrontLidarDriver/RearLidarDriver (latest) -> ObjectCollisionEstimator]

exe mw type low mean high top bottom std_dev
autoware_default_apr rmw_apex_middlewz latency 0.235445 0.25557 0.297055 0.26494148 0.24619852000000C 0.00937148 ' WIthOUt number CrunChlng
autoware default m rmw apex middlewz latency 1.696 1.78783 2.08607 1.8814388 1.6942212 0.0936088

Latency Summary 10s [FrontLidarDriver/RearLidarDriver (latest) -> ObjectCollisionEstimator]

2 -
1.5 <
a.
£
%)
~
D
e
& i
-~
)
& 1
@
S
<C i
0.5
0 f f
rmw_apex_middleware rmw_apex_middleware
autoware default apex os executor optimized benchmark autoware default multithreaded executor benchmark

© 2021 Apex.Al, Inc.

Results for the reference system

Behavior Planner Jitter Summary Table 10s

exe mw type low mean high top bottom std_dev
autoware_default_ar rmw_apex_middlew: period 99.9829 100 100.017 100.00284866 99.99715134 0.00284866 | Wlth defaUIt number CrunChlng
autoware default m rmw apex middlew: period 99.8355 99.9984 100.181 100.0733053 99.9234947 0.0749053

Behavior Planner Jitter Summary 10s

102 |
101 —+
=S]
©
S 100 - ==
D
Q.
99 -
98
f f
rmw_apex_middleware rmw_apex_middleware
autoware default apex os executor optimized autoware_default_multithreaded_executor

© 2021 Apex.Al, Inc.

CPU Usage Statistics 10s

fos)
| 7o)

CPU

exe mw type

400

200

100

0

autoware_default_ap rmw_apex_middlewa cpu
autoware_default_ap rmw_apex_middlewa cpu
autoware_default_mtu rmw_apex_middlewa cpu

autoware_default_mt rmw_apex_middlewa cpu

CPU Usage Summary 10s

T

low

(=T = B -

Results for the reference system

mean high

217.5268676277850 447.8
3.237541163556531 145.7
238.9803716608594 364.5

106.6778285714285 266

top
275.9
0
265.7

892

bottom

181.4

175

872

Turn off number crunching

rmw_apex_middleware

autoware default apex os executor optimized

*

std_dev

80.04410660125261
16.82830151766534
66.59557197970123

37.73353960732825

Turn off number|crunching

Flame Graph

I

|
[] n
]]

] [

a 1 — d.jl
] 1) dalll

] (@85 org:e.. | -
=] org:ieclipsesi. | | =
=] ‘apex:rmw_apex.m.. | W
& in. stdii i std::_introsort loop.. SHIEMNGUSRGSINS jo.. § | |org: @
a /] (EpeX:irmW_spex midd|ewaresdetail:WaitSetContext::upd i @ @EUSEIN org:ccipse:. EHND @ | |
;|] n "
=: wait " m n
= 0 v FeleppEnl |

80% of the time is spent in
rclcpp::wait_for_work()

rmw_apex_middleware

autoware default apex os executor optimized benchmark

rmw_apex_middleware

autoware default multithreaded

rmw_apex_middleware

autoware default

multithreaded benchmark

© 2021 Apex.Al, Inc.

CPU Usage Statistics 60s

CPU (%)

B

exe mw type
autoware_default_m rmw_cyclonedds _cp cpu
autoware_default_sit rmw_cyclonedds cp cpu

autoware_default_st; rmw_cyclonedds cp cpu

CPU Usage Summary 60s

200 -t ———

150 -1

100

+

low

Results for the reference system

mean
48.8288202109394:
19.48428085519922

10.02866488975042

high
199.1
138.1

134.6

top
68.4

66.9

bottom std_dev

0 41.89926966822244
0 31.16869512840751
0 24.5276319835050¢€

rmw_cyclonedds _cpp

autoware default multithreaded

ROS 2 Galactic without number crunching

rmw_cyclonedds_cpp

autoware_default_singlethreaded

rmw_cyclonedds cpp

autoware_default_staticsinglethreaded

© 2021 Apex.Al, Inc.

Apex

The vehicle OS company.

Thank you!

michael.poehnl@apex.ai

© 2021 Apex.Al, Inc.

mailto:michael.poehnl@apex.ai

